Gromov’s convergence theorem and its application
نویسندگان
چکیده
منابع مشابه
Gromov's Convergence Theorem and Its Application
One of the basic questions of Riemannian geometry is that "If two Riemannian manifolds are similar with respect to the Riemannian invariants, for example, the curvature, the volume, the first eigenvalue of the Laplacian, then are they topologically similar?". Initiated by H. Rauch, many works are developed to the above question. Recently M. Gromov showed a remarkable theorem ([7] 8.25, 8.28), w...
متن کاملconstruction and validation of translation metacognitive strategy questionnaire and its application to translation quality
like any other learning activity, translation is a problem solving activity which involves executing parallel cognitive processes. the ability to think about these higher processes, plan, organize, monitor and evaluate the most influential executive cognitive processes is what flavell (1975) called “metacognition” which encompasses raising awareness of mental processes as well as using effectiv...
Weighted statistical convergence and its application to Korovkin type approximation theorem
In this paper, we introduce the concepts of weighted ideal statistical convergence or SN (I)-convergence and I − (N, pn)-summability. We also establish the relations between our new methods. Further, we determine a Korovkin type approximation theorem through I − (N, pn)-summability. −−−−−−−−−−−−−−−−−−−−−−−−−−−−
متن کاملCoincidence point theorem in ordered fuzzy metric spaces and its application in integral inclusions
The purpose of this paper is to present some coincidence point and common fixed point theorems for multivalued contraction maps in complete fuzzy metric spaces endowed with a partial order. As an application, we give an existence theorem of solution for general classes of integral inclusions by the coincidence point theorem.
متن کاملThe Basic Theorem and its Consequences
Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 1985
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000000209